

Indium

Indium is a JavaScript development environment for Emacs [http://gnu.org/software/emacs].

Indium is Free Software, licensed under the GPL v3.0. You can follow its
development on GitHub [https://github.com/NicolasPetton/indium].

Indium connects to a browser tab or nodejs process and provides several features
for JavaScript development, including:

	a REPL (with auto completion) & object inspection;

	an inspector, with history and navigation;

	a scratch buffer (M-x indium-scratch);

	JavaScript evaluation in JS buffers with indium-interaction-mode;

	a stepping Debugger, similar to edebug, or cider.

This documentation can be read online at https://indium.readthedocs.io and in
Info format (within Emacs with (info "Indium")).

It is also available in Info format and can be consulted from within Emacs with
C-h i m indium RET.

Table of contents

	Installation
	The Indium server

	Using MELPA

	Manual installation

	Getting up and running
	Project configuration

	General configuration

	Chrome/Chromium configuration options

	NodeJS configuration options

	Starting Indium

	NodeJS requirements

	Chrome/Chromium requirements

	The REPL
	Starting a REPL

	Using the REPL

	Code evaluation & context

	Interaction in JS buffers
	Evaluating and inspecting

	Switching to the REPL buffer

	Adding and removing breakpoints

	The stepping debugger
	Using sourcemaps

	Blackboxing scripts

	The inspector
	Using the inspector

	Troubleshooting
	General advice before reporting issues

	The Indium server doesn’t start

	Breakpoints are not set (not using sourcemaps)

	Breakpoints and debugging do not work (using sourcemaps)

Indices and tables

	Index

	Module Index

	Search Page

Installation

Note

If you already have installed Jade, you should read the
Migration from Jade page first.

Indium supports Emacs 25.3+, works with Chrome (debugging protocol
v1.2, see Chrome/Chromium requirements) and NodeJS, see
NodeJS requirements.

Indium works with js-mode, js2-mode, js2-jsx-mode and
rjsx-mode. It supports the ECMAScript features of the runtime it connects
to.

Indium is available on MELPA [https://melpa.org], MELPA Stable [https://stable.melpa/org].

The Indium server

Indium needs to communicate with a small server for evaluation and debugging.
Install the server with the following command (prepend sudo on GNU/Linux):

npm install -g indium

Using MELPA

Unless you are already using MELPA, you will have to setup package.el to use
MELPA or MELPA Stable repositories. You can follow this documentation [https://melpa.org/#/getting-started].

You can install Indium with the following command:

M-x package-install [RET] indium [RET]

or by adding this bit of Emacs Lisp code to your Emacs initialization file
(.emacs or init.el):

(unless (package-installed-p 'indium)
 (package-install 'indium))

If the installation doesn’t work try refreshing the package list:

M-x package-refresh-contents [RET]

Manual installation

If you want to install Indium manually, make sure to install websocket.el.
Obtain the code of Indium from the repository [https://github.com/NicolasPetton/indium].

Add the following to your Emacs configuration:

;; load Indium from its source code
(add-to-list 'load-path "~/projects/indium")
(require 'indium)

Getting up and running

Project configuration

Place a .indium.json file in the root folder of your JavaScript project.
The project file can contain one or many configurations settings for NodeJS (see
NodeJS configuration options) and Chrome/Chromium (see
Chrome/Chromium configuration options).

Here is a minimalist .indium.json file.:

{
 "configurations": [
 {
 "name": "Web project",
 "type": "chrome"
 }
]
}

General configuration

The .indium.json file can contain as many configurations as needed, and mix
any supported configuration types.

The currently supported type values are "chrome" and "node".

The root directory of the source files is by default set to the directory where
this .indium.json file is placed, but it can be overridden with the root
(or the webRoot alias) option:

{
 "configurations": [
 {
 "type": "chrome",
 "root": "src"
 }
]
}

Custom sourcemap path overrides can be set with sourceMapPathOverrides. See
Using sourcemaps for more information on sourcemaps and debugging.

Chrome/Chromium configuration options

	host

	Host on which Chrome is running (defaults to "localhost").

	port

	Port on which Chrome is running (defaults to 9222).

	url

	Url to open when running indium-launch.

Example configuration:

{
 "configurations": [
 {
 "name": "Web project",
 "type": "chrome",
 "host": "192.168.22.1",
 "url": "http://192.168.22.1/myproject/index.html",
 "port": 9222
 }
]
}

NodeJS configuration options

	program

	Nodejs program to start a new process. The --inspect flag will be
added automatically. Expected type: string.

	args

	Arguments passed to the program to debug. Expected type: string.

	inspect-brk

	Whether Indium should break at the first statement (false by
default).

	host

	Host on which the Node inspector is listening (defaults to "localhost").

	port

	Port on which the Node inspector is listening (defaults to 9229).

Here is an example configuration for debugging Gulp tasks:

{
 "configurations": [
 {
 "name": "Gulp",
 "type": "node",
 "program": "node",
 "args": "./node_modules/gulp/bin/gulp.js",
 "inspect-brk": true
 }
]
}

When the NodeJS application runs on another computer (or inside a container like
Docker), a custom remote project root path can be set with remoteRoot. See
Setting a different remote root (NodeJS) for more information on script paths and debugging.

Starting Indium

Indium can be started in two modes:

	Connect: M-x indium-connect Connect indium to a running runtime from one
of the configurations in the .indium.json project file.

	Launch: M-x indium-launch Start a JavaScript process (Chrome or NodeJS) as
specified from the configurations in the .indium.json project file.

NodeJS requirements

Nodejs >= 8.x is required for Indium to work.

If your distribution ships an old version of NodeJS, you can install a more
recent version using nvm [https://github.com/creationix/nvm]:

$ curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.33.2/install.sh | bash

Once nvm is install, you can easily install and use the version of NodeJS
you want:

$ nvm install v8
$ nvm alias default v8
$ node --version

If you install NodeJS using nvm, chances are that Emacs won’t have it in its
exec path. A simple solution is to use the excellent exec-path-from-shell [https://github.com/purcell/exec-path-from-shell] package.

Chrome/Chromium requirements

Chrome/Chromium >= 60.0 is required for Indium to properly work (debugging
protocol v1.2).

When the variable indium-chrome-use-temporary-profile is non-nil (the
default), M-x indium-launch will start a new instance of Chrome/Chromium
with the remote debugging port set up.

Otherwise, you can start Chrome/Chromium with the --remote-debugging-port
flag like the following:

chromium --remote-debugging-port=9222 https://localhost:3000

If you start Chrome manually, make sure that no instance of Chrome is already
running, otherwise Chrome will simply open a new tab on the existing Chrome
instance, and the remote-debugging-port will not be set.

The REPL

Starting a REPL

A REPL (Read Eval Print Loop) buffer is automatically open when a new Indium
connection is made (see Getting up and running).

[image: _images/repl.png]
The REPL offers the following features:

	Auto completion with company-mode

	JS syntax highlighting

	Pretty printing and preview of printed values

	Access to the object inspector (see The inspector)

[image: _images/repl2.png]

Using the REPL

Keybindings

Here is the list of available keybindings in a REPL buffer:

Reconnecting from the REPL buffer

When a connection is closed (most probably because other devtools were open on
the same runtime), the REPL will display two buttons, one to try to reopen the
connection, and another one to kill Emacs buffers using this connection (the
REPL buffer, inspectors & debuggers).

Code evaluation & context

When evaluating code in the REPL, Indium will always run the code on the current
execution context.

This means that while debugging, code execution will happen in the context of
the current stack frame, and will be able to access local variables from the
stack, etc.

Interaction in JS buffers

Indium comes with a minor mode called indium-interaction-mode for interactive
programming. To enable it in all JavaScript buffers, add something
like the following to your Emacs configuration:

(require 'indium)
(add-hook 'js-mode-hook #'indium-interaction-mode)

When indium-interaction-mode is on, you can evaluate code, inspect objects and
add or remove breakpoints from your buffers.

Evaluating and inspecting

Here’s a list of available keybindings:

	C-x C-e: Evaluate the JavaScript expression preceding the point.

	C-M-x: Evaluate the innermost function enclosing the point.

	C-c M-i: Inspect the result of the evaluation of an expression (see
The inspector).

	C-c M-:: Prompt for an expression to evaluate and inspect.

	M-x indium-eval-buffer: Evaluate the entire buffer.

	M-x indium-eval-region: Evaluate the current region.

Switching to the REPL buffer

Press C-c C-z from any buffer with indium-interaction-mode turned on to
switch back to the REPL buffer (see The REPL).

Adding and removing breakpoints

You need to first make sure that Indium is set up correctly to use local files
(see General configuration).

	C-c b b: Add a breakpoint

	C-c b c: Add a conditional breakpoint

	C-c b k: Remove a breakpoint

	C-c b t: Toggle a breakpoint

	C-c b K: Remove all breakpoints from the current buffer

	C-c b e: Edit condition of a breakpoint

	C-c b l: List all breakpoints and easily jump to any breakpoint

	C-c b d: Deactivate all breakpoints (the runtime won’t pause when hitting a breakpoint)

	C-c b a: Activate all breakpoints (it has no effect if breakpoints have not been deactivated)

The left fringe or margin can also be clicked to add or remove breakpoints.

Once a breakpoint is set, execution will stop when a breakpoint is hit, and the
Indium debugger pops up (see The stepping debugger).

Since Indium 0.7, breakpoints are supported in source files with an associated sourcemap, see Using sourcemaps.

Note

Breakpoints are persistent: if the connection is closed, when a new
connection is made Indium will attempt to add back all breakpoints.

The stepping debugger

Using sourcemaps

Since version 0.7, Indium uses sourcemap files by default.

For sourcemaps to work properly with Chrome/Chromium, make sure that a
workspace is correctly set (see Getting up and running).

Warning

If your project uses sourcemaps, we advise you to use js-mode
with js2-minor-mode instead of js2-mode. js2-mode can
be extremely slow at parsing large files (like compiled JavaScript
files) that the debugger might open if a stack frame source is not
source-mapped. This can happen for instance when using Webpack.

Overriding sourcemap paths

Some sourcemaps cannot be used as is and need path rewriting to map to locations on disks.

Indium provides the configuration option sourceMapPathOverrides for
providing custom sourcemap paths.

The default mapping works well for Webpack projects:

{
 "webpack:///./~/": "${root}/node_modules/",
 "webpack:///./": "${root}/",
 "webpack:///": "/",
 "webpack:///src/": "${root}/"
}

Overriding the sourceMapPathOverrides option will erase the default mapping.

Tip

If sourcemaps do not seem to work, you can see how Indium resolves
sourcemap paths using M-x indium-list-sourcemap-sources.

Setting a different remote root (NodeJS)

When running a NodeJS application on a remote machine or inside a Docker
container, your application’s root folder path might not correspond to where
their source code is located on your local disk.

In this case, you can tell Indium to replace the root path with a different
location using the remoteRoot configuration option.

	{

	…
“remoteRoot”: “/var/task”

}

Note that remoteRoot can be used together with the root configuration
option.

Blackboxing scripts

The custom variable indium-debugger-blackbox-regexps holds a list of regular
expression of script paths to blackbox when debugging.

Blackboxed scripts are skipped when stepping in the debugger.

The inspector

Indium features an object inspector that can be open on any object reference
from a REPL buffer (see The REPL), the debugger (see The stepping debugger), or
the result of any evaluation of JavaScript code (see Interaction in JS buffers).

To inspect the result of the evaluation of an expression, press C-c M-i. An
inspector buffer will pop up. You can also press RET or left click on
object links from the REPL buffer.

[image: _images/inspector.png]

Using the inspector

Here is a list of available keybindings in an inspector buffer:

	Keybinding

	Description

	RET

	Follow a link to inspect the object at point

	l

	Pop to the previous inspected object

	g

	Update the inspector buffer

	n or TAB

	Jump to the next object in the inspector

	p or s-TAB

	Jump to the previous object in the inspector

Troubleshooting

If you run into issues with Indium, this document might help you.

General advice before reporting issues

Issues should be reported on the GitHub issue tracker [https://github.com/nicolaspetton/indium/issues].

1. If you encounter errors, you can enable debug-on-error in Emacs using M-x
toggle-debug-on-error and report an issue with the backtrace.

2. It is also a good idea to turn on Indium’s log mode with M-: (setq
indium-client-debug t), and attach to the issue report the contents of the
indium-debug-log buffer to help resolve the issue.

Attaching the contents of the *indium-process* buffer can help as well in
case an error happens in the server process.

The Indium server doesn’t start

First, make sure that indium is installed as documented in the
The Indium server section.

If you encounter the error:

"error in process filter: Indium server process error: env: node: No such file or directory"

Chances are that node is not in Emacs’ exec-path. In this case, you can
fix it by appending the correct directory to exec-path, or use the
exec-path-from-shell [https://melpa.org/#/exec-path-from-shell] package:

(require 'exec-path-from-shell)
(exec-path-from-shell-initialize)

Breakpoints are not set (not using sourcemaps)

If breakpoints do not work, chances are that the project is not configured
correctly.

Note

Indium needs to know how to map script source urls to files on disk.
It uses the root (alias webRoot) configuration option as the
base path, as described in the General configuration page.

Indium provides a command indium-list-script-sources to list all scripts
parsed by the backend, displaying their sources mapped to files on disk. Check
that the file where you’re trying to add a breakpoint is listed.

Breakpoints and debugging do not work (using sourcemaps)

Correctly mapping sourcemaps to file locations can be tedious (see
Using sourcemaps).

Indium provides the command indium-list-sourcemap-sources to help
configuring sourcemaps correctly. This command displays a list of all
sourcemap sources in the runtime as file paths on disk. Check that your files
are listed there.

Index

 Indium is a JavaScript development environment for Emacs [http://gnu.org/software/emacs].

Indium is Free Software, licensed under the GPL v3.0. You can follow its
development on GitHub [https://github.com/NicolasPetton/indium].

Indium connects to a browser tab or nodejs process and provides several features
for JavaScript development, including:

	a REPL (with auto completion) & object inspection;

	an inspector, with history and navigation;

	a scratch buffer (M-x indium-scratch);

	JavaScript evaluation in JS buffers with indium-interaction-mode;

	a stepping Debugger, similar to edebug, or cider.

This documentation can be read online at https://indium.readthedocs.io and in
Info format (within Emacs with (info "Indium")).

It is also available in Info format and can be consulted from within Emacs with
C-h i m indium RET.

Migration from Jade

Indium was previously known as Jade. The project was renamed because of
trademark issues.

If you already have Jade installed, you should first uninstall it with:

M-x package-uninstall RET jade RET

If you have .jade marker files in your projects, simply rename them to .indium (see local-files).

 _images/repl.png
JS REPL https://www.gnu.org/

Welcome to Jade!
 Connected to webkit @ https://ww.gnu.org/

js> window.location.]

replace
assign
hash
search
pathname
port
hostname
host
protocol
origin

_images/repl2.png
JS Inspector https://www.gnu.org/

Welcome to Jade!
Connected to webkit @ https://www.gnu.org/

js> window. location

Locaftlion { hash:

, hostname: "wuw.gnu.orgs

_images/inspector.png
cation

replace: function { }
i function { }

search:
pathname

port: *

hostname: "www.gnu.org”
host: "www.gnu.or

https:
ttps://www.gnu.org"
/www . gnu.org/"
ancestorOrigins: DOMStringlist { }
reload: function { }
toString: function { 1}
U%e- +35 Inspector https://wai.gnu.org/s Top (1,0) (Inspector ivy Abbrev)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Indium

 		
 Installation

 		
 The Indium server

 		
 Using MELPA

 		
 Manual installation

 		
 Getting up and running

 		
 Project configuration

 		
 General configuration

 		
 Chrome/Chromium configuration options

 		
 NodeJS configuration options

 		
 Starting Indium

 		
 NodeJS requirements

 		
 Chrome/Chromium requirements

 		
 The REPL

 		
 Starting a REPL

 		
 Using the REPL

 		
 Keybindings

 		
 Reconnecting from the REPL buffer

 		
 Code evaluation & context

 		
 Interaction in JS buffers

 		
 Evaluating and inspecting

 		
 Switching to the REPL buffer

 		
 Adding and removing breakpoints

 		
 The stepping debugger

 		
 Using sourcemaps

 		
 Overriding sourcemap paths

 		
 Setting a different remote root (NodeJS)

 		
 Blackboxing scripts

 		
 The inspector

 		
 Using the inspector

 		
 Troubleshooting

 		
 General advice before reporting issues

 		
 The Indium server doesn’t start

 		
 Breakpoints are not set (not using sourcemaps)

 		
 Breakpoints and debugging do not work (using sourcemaps)

_static/indium.png

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

